SYNERGISTIC ACTIVATION OF CALCIUM-ACTIVATED NEUTRAL PROTEASE BY Mn²⁺ and Ca²⁺

Koichi SUZUKI and Shuichi TSUJI

Department of Biochemistry, Faculty of Medicine, University of Tokyo, Bunkyo-ku Tokyo 113, Japan

Received 1 February 1982

1. Introduction

Calcium-activated neutral protease (CANP, EC 3.4.22.17) is ubiquitous in cells and probably controls the initial steps of intracellular protein degradation [1]. CANP prepared from various sources usually requires mM Ca2+ for activation (called mCANP) [2-4], although another species of CANP (µCANP) highly sensitive to Ca2+ and active at μ M Ca2+ was found [5,6] and was prepared by autolysis of mCANP [7,8]. Since free Ca^{2+} in cells is in the μM order, the role of mCANP in vivo remains unclear. In the cells various ions may act on CANP simultaneously with Ca²⁺. In the following studies the effect of various metal ions on CANP was examined and it was revealed that Mn²⁺ and Ca²⁺ activate CANP in a concerted manner at a concentration where Mn²⁺ or Ca²⁺ alone is not effective.

2. Materials and methods

mCANP was purified from chicken skeletal muscle [3] and its sensitized form (μ CANP) was prepared by autolysis of mCANP as in [7,9]. Standard assays (Ca²⁺ assay) for mCANP and μ CANP were performed with 6 mM Ca²⁺ as in [3]. The assay with Mn²⁺-Ca²⁺ (Mn²⁺-Ca²⁺ assay) was performed in 2 mM Mn²⁺ - 100 μ M Ca²⁺ for mCANP and in 1 mM Mn²⁺-20 μ M Ca²⁺ for μ CANP. Other conditions for assays were the same as in [3]. The effect of metal ions added to the assay mixture was examined at a fixed [Ca²⁺]; i.e. 100 μ M and 20 μ M for mCANP and μ CANP, respectively, where both CANPs are almost inactive. Metal ion solutions were prepared with their chlorides. Inhibitors of CANP, E-64, E-64c, leupeptin, and antipain, were obtained as in [10].

3. Results

3.1. Effect of various metal ions on the activity of CANP

Various metal ions (1.2 mM) were added to the assay mixture together with 100 μ M Ca²⁺ where mCANP is almost inactive to determine whether they activated CANP. As reported [3], no single metal ion except for Ca²⁺ activated mCANP at 1.2 mM in the absence of Ca²⁺. However, Mn²⁺ and Ba²⁺ clearly activated mCANP when they were added together with 100 μ M Ca²⁺ (table 1). This indicates that Ca²⁺ can act on CANP cooperatively with such metal ions as Mn²⁺ or Ba²⁺. Sr²⁺ was slightly effective for the activation. Mg²⁺ and Cd²⁺ had almost no effect on the activity of CANP and could not replace the effect of Mn²⁺ and Ba²⁺. The effect of Mn²⁺ and Ba²⁺ on mCANP was apparently additive, though further examination was not performed.

Table 1
Effect of metal ions on the activity of mCANP in the presence of Ca²⁺

Metal ions ^a added	Activity ^b (%)	Metal ions ^a added	Activity ^b (%)
None	2.8	Cd + Sr	3.3
Mn	59	Cd + Ba	36
Mg	0	Mg + Mn	57
Sr	6.1	Mg + Sr	4.7
Ba	38	Mg + Ba	42
Cd	0	Mn + Sr	51
Cd + Mg	0	Mn + Ba	82
Cd + Mn	47	Sr + Ba	43

^a Each metal ion was added at 1.2 mM to the assay mixture with 100 μ M Ca²⁺

b Activity determined by the Ca²⁺ assay (in 6 mM Ca²⁺) was taken as 100%

When 3 kinds of metal ions listed in table 1 were added in various combinations to the assay mixture with $100 \,\mu\text{M} \,\text{Ca}^{2+}$, the activity of mCANP was observed only when Mn²⁺ and/or Ba²⁺ was present. The effect of various metal ions on μ CANP was similar to that on mCANP, and μ CANP was activated by Mn²⁺ and Ba²⁺. Further studies on the effect of metal ions on CANP were performed with Mn²⁺.

3.2. Optimum [Mn2+] for activation of CANP

Mn²⁺ activated CANP only in the presence of Ca²⁺. The [Ca²⁺] required for this activation was quite low and could not activate CANP in the absence of Mn²⁺. The optimum [Mn²⁺] for activation of CANP was 1.5-2 mM for mCANP and 0.5-2 mM for μ CANP (fig.1). The [Mn²⁺] for 50% activation (K_a) was $550~\mu$ M and $70~\mu$ M for mCANP and μ CANP, respectively. These K_a -values are similar to those obtained with Ca²⁺ in the absence of Mn²⁺; i.e., $410~\mu$ M and $70~\mu$ M for mCANP and μ CANP, respectively (see fig.2).

3.3. Activation of CANP by Ca²⁺ in the presence of Mn²⁺

The results in table 1 suggest that Mn^{2+} enhances the sensitivity of CANP to Ca^{2+} . Accordingly, activation of mCANP and μ CANP by Ca^{2+} was examined with and without Mn^{2+} (fig.2). In the presence of Mn^{2+} , half-maximum activation was observed at 40 μ M and 15 μ M for mCANP and μ CANP, respec-

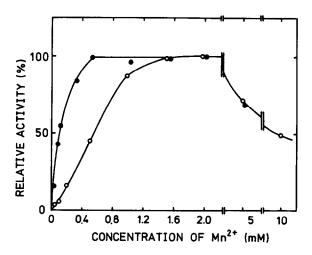


Fig.1. Optimum [Mn²⁺] for activation of CANP. The activity was measured with various concentrations of Mn²⁺ in 100 μ M and 20 μ M Ca²⁺ for mCANP and μ CANP, respectively. The maximum activity was taken as 100%. (o) mCANP; (\bullet) μ CANP.

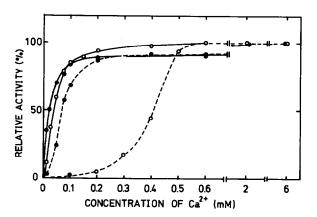


Fig. 2. Activation of CANP by Ca^{2+} in the presence of Mn^{2+} . Activity was measured at various concentrations of Ca^{2+} with (——) and without (——) Mn^{2+} ; 2 mM and 1 mM Mn^{2+} for mCANP and μ CANP, respectively. (o) mCANP; (o) μ CANP.

tively, while without Mn^{2+} , the K_a -values were 410 $\mu\mathrm{M}$ and 70 $\mu\mathrm{M}$, respectively. Mn^{2+} enhanced the sensitivity of both mCANP and $\mu\mathrm{CANP}$ to $\mathrm{Ca}^{2+} \gtrsim 5$ -times, though absolute K_a -values may not be accurate because Ca^{2+} -buffer was not used. The maximum activity obtained with the Mn^{2+} - Ca^{2+} assay was 60–80% of that determined by the Ca^{2+} assay.

3.4. Kinetic properties of CANP measured by the Mn^{2+} – Ca^{2+} assay

The optimum pH-values for the activation of mCANP and μ CANP by Mn²⁺ were both 7.5-8.0, which are identical to those determined by the Ca2+ assay [3]. $K_{\rm m}$ -Values of mCANP for casein were 1.2 mg/ml and 0.90 mg/ml for the Ca^{2+} and Mn^{2+} — Ca^{2+} assays, respectively. The activities of both CANPs were strongly inhibited by leupeptin, antipain, E-64 and E-64c. The molar ratios of inhibitor to mCANP for 50% inhibition of activity (ID_{50}) were 4, 15, 11 and 8, respectively, which are almost identical to those determined by the Ca2+ assay [10]. When mCANP was incubated in 2 mM Mn²⁺-100 μ M Ca²⁺ (pH 7.5), autolysis occurred as in Ca²⁺ [7]. During this autolysis, CANP was converted to its sensitized form to Ca2+ and the activity at 100 µM Ca2+ appeared (fig.3). SDS-polyacrylamide gel electrophoresis indicated that the M_{τ} -value of mCANP changed as follows: 82 000 (mCANP) \rightarrow 78 000 \rightarrow 57 000 \rightarrow \rightarrow . The newly formed 2 species (M_r 78 000 and 57 000) active at 100 μ M Ca²⁺ were identical to μ CANP I and II, respectively, obtained in Ca²⁺ [7]. Though the rate of

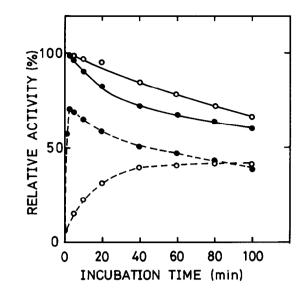


Fig.3. Autolysis of CANP in $Mn^{2+}-Ca^{2+}$. mCANP (0.5 mg/ml) was incubated at 0°C in 50 mM Tris-HCl, 2 mM 2-mercaptoethanol (pH 7.5) containing 2 mM $Mn^{2+}-0.1$ mM Ca^{2+} (o). At intervals aliquots were assayed with 6 mM (——) and $100 \mu M$ (——) Ca^{2+} . Similar incubation was performed in 1 mM Ca^{2+} as a control (•) and aliquots were analyzed as above.

autolysis in Mn²⁺—Ca²⁺ was slower than that in Ca²⁺, probably due to the difference in the maximum activities, similar overall features of autolysis indicate the same substrate specificity in Mn²⁺—Ca²⁺.

These results show that the properties of CANP measured by the Mn²⁺-Ca²⁺ assays were essentially the same as those measured by the Ca²⁺ assays.

4. Discussion

In the presence of 1-2 mM Mn²⁺, the Ca²⁺ sensitivity of CANP is significantly enhanced and both mCANP and μ CANP are active at a physiological [Ca²⁺]. However, since [Mn²⁺] in vivo is ≤ 10 μ M, this activation by Mn²⁺ may not be of physiological importance. Nevertheless, this fact suggests that the sensitivity of CANP to Ca²⁺ may be modulated in vivo by other metal ions to become active at physiological [Ca²⁺]. If so, not only μ CANP but also mCANP may play an important role in the degradation of proteins. The enhancement of Ca²⁺ sensitivity of CANP by Mn²⁺ and other metal ions will be common to CANPs from other sources, because rabbit muscle CANP was also activated by Mn²⁺, Ba²⁺ and Sr²⁺.

We suppose that at least 2 molecules of Ca²⁺ bind to CANP. One with a dissociation constant (K_d) of μ M order directly participates in the enzyme catalysis and the other with a K_d -value of mM order induces the active conformation of CANP. Only the latter can be replaced by other metal ions like Mn²⁺. In the case of μ CANP, the K_d -value of the latter is lowered by some modification [6,7], though the former site is unchanged. As the K_d -value of the former site is smaller than that of the latter site, the sensitivity of CANP to Ca2+ and other metal ions is determined mainly by the latter site. This hypothesis explains the results so far obtained concerning the effect of Ca²⁺ and other metal ions on the structure and activity of CANP [3.10.11]. Preliminary results that the conformation of mCANP in 2 mM Mn²⁺ is indistinguishable from that of carboxymethylated mCANP in 6 mM Ca²⁺ also support this model.

Acknowledgement

This work was supported in part by research grants from the Ministry of Education, Science and Culture of Japan.

References

- [1] Dayton, W. R., Goll, D. E., Stromer, M. H., Reville, W. J., Zeece, M. G. and Robson, R. M. (1975) in: Proteases and Biological Control (Reich, E. et al. eds), pp. 551-577, Cold Spring Harbor Laboratories, New York.
- [2] Dayton, W. R., Reville, W. J., Goll, D. E. and Stromer, M. H. (1976) Biochemistry 15, 2159-2167.
- [3] Ishiura, S., Murofushi, H., Suzuki, K. and Imahori, K. (1978) J. Biochem. (Tokyo) 84, 225-230.
- [4] Suzuki, K., Ishiura, S., Tsuji, S., Katamoto, T., Sugita, H. and Imahori, K. (1979) FEBS Lett. 104, 355-358.
- [5] Mellgren, R. L. (1980) FEBS Lett. 109, 129-133.
- [6] Dayton, W. R., Schollmeyer, J. V., Lepley, R. A. and Cortes, L. R. (1981) Biochim. Biophys. Acta 659, 48-61.
- [7] Suzuki, K., Tsuji, S., Kubota, S., Kimura, Y. and Imahori, K. (1981) J. Biochem. (Tokyo) 90, 275-278.
- [8] Kubota, S., Suzuki, K. and Imahori, K. (1981) Biochem. Biophys. Res. Commun. 100, 1189-1194.
- [9] Suzuki, K., Tsuji, S., Kimura, Y., Kubota, S. and Imahori, K. (1981) J. Biochem. (Tokyo) 90, 1787-1793.
- [10] Suzuki, K., Tsuji, S. and Ishiura, S. (1981) FEBS Lett. 136, 119-122.
- [11] Tsuji, S., Ishiura, S., Nakamura, M., Katamoto, T., Suzuki, K. and Imahori, K. (1981) J. Biochem. (Tokyo) 90, 1405-1411.